Addressing cross-cutting issues arising in the development of SPPI’s for use in the measurement of Service Sector GDP

Paper prepared for the 22nd Voorburg Group, Seoul, Korea, 10 – 14 September 2007

Matt Berger
Australian Bureau of Statistics

1. Introduction
The Voorburg Group was initiated with the objective of establishing an internationally comparable methodology for measuring the deflated or constant dollar outputs of the service industries. A new approach to this objective commenced with the 21st Voorburg Group meeting in Wiesbaden, where papers on particular service industries were presented as plenary sessions by both producer price index developers and turnover survey practitioners, and then summarised in a closing session. With the new format trialled for the industries of Road Freight, Transport and Management Consultancy Services, a key outcome of the 21st Voorburg was the emerging view that a subset of issues encountered in specific industries was indeed common across many industries within the Service Industry sector. Consequently, recurring themes arose during the meeting of the Group. The strategy session discussion concluded further that these issues would likely arise, again, in future meetings.

2. The problem: Service Industry Statistics
Services are typically produced and delivered in direct contact with the customer, and as a consequence there is a more frequent occurrence of unique service products than in the equivalent case of the production of goods. A unique service product is one that is only provided once to the specifications of an individual customer, and prices cannot be observed over multiple periods. Various business services fall into this category, making price measurement a daunting task. Examples include legal, accounting and consultancy-type services, architectural and engineering services, and more frequently “complete logistic solutions” in the transport and storage industries.

Further, service producers often employ pricing mechanisms that are complex, at least from the point of view of the statistician attempting to measure price of the service. These mechanisms vary from hourly fees (which are not complex for the service provider to administer but cause considerable complications for statisticians when used in pricing methods), to the bundling of services.

National statistical offices are frequently confronted with a combination of both unique services and complex pricing mechanisms. The choice of pricing mechanism, together with the particular unique service being delivered, limits the types of pricing

1 This section borrows heavily from “Methodological Guide For Developing Producer Price Indexes For Services”, OECD-Eurostat, particularly Chapter 2
methods which national statistical agencies may employ. This limitation is further complicated by the compliance cost that some methodologies place on establishments responding to statistical instruments.

A consequence of these limitations is that national statistical offices often choose to employ less preferred methods when constructing SSPT's. For example, time-based methods are frequently employed because service providers levy a fee based on hours worked. In many cases the choice of pricing method is undertaken because that method is the only applicable tool that will guarantee survey returns each period. The questions arise, are there adverse implications of using such methods (particularly with respect to measurement of GDP), and can these implications be mitigated?

The business of official statistics in these instances can be thought of as a (very) complicated balancing act. The ongoing constraints of time and agency resources need to be balanced on the one hand against the final use of the statistics, on another hand against the conceptual model which underpins the measurement, and yet on another (1) hand against the compliance cost and response issues associated with adopting a given measurement strategy. Giving too much weight to the conceptual aspects risks delivery of the statistics in any form, yet too little consideration renders the resulting statistics unfit for purpose. This is complicated yet further when there are multiple uses of the statistics.

This paper describes the common difficulties encountered in the measurement of turnover and producer price indexes for services, and to acknowledge the practical compromises adopted by national statistical offices. It further highlights the assumptions of adopting these methodologies, and possible consequences for national accounts when using such measures.

3. Key findings from Wiesbaden 2006

The meeting in Wiesbaden adopted the process of a two-part cycle for establishing methodology for particular service industries. The first year would see the sharing of experiences of individual national statistical offices with the Group (for both producer price indexes and turnover), with a summary session indicating the types of issues to be included in a unifying “sector paper” to be presented in the second year. When both Road Freight Transport and Management Consultancy Services were presented, the following themes arose in common:

a) Measurement of product versus measurement of industry
b) Determining scope: the need for clarity regarding international services versus exports of services

c) Use of time based methods for PPVs
d) impact of new technology

With particular regard to Management Consultancy Services, the Group discussions also indicated that several issues encountered thus far were known to be (or considered likely to be) issues for other types of business services, in particular:

c) Use of time based methods for PPVs
d) impact of new technology
With regard to Road Freight transport, the Group discussions also indicated that one group of issues encountered thus far were known to be (or considered likely to be) issues for other types of transport services, in particular:

e) **Bundled services, and Multi-modal solutions**: where the pricing mechanism groups together a range of separate services, or where the production of a service incorporates several other services (e.g., road freight travelling via ferry).

These issues or themes will be discussed from a conceptual viewpoint as well and consideration of the practical compromises that national statistical offices are often forced to adopt.

4. Measurement of product versus measurement of industry

In an ideal\(^2\) world, economic activity, real world business units, classifications and statistical units would align perfectly. Establishments\(^4\) would only undertake primary and ancillary activities, doing away with the need for the definition of secondary activities (and thus secondary products). Industry and product classifications would align so thoroughly that all industry statistics could be considered aggregation of product level statistics. In such a statistician’s utopia, each business unit would be split into homogenous statistical units, each of which undertook one (and only one) type of activity, and hence only produced one type of product. The measurement of product would be equivalent to the measurement of industry.

Moving on from this abstract ideal we see that:

- business units are defined according to business needs, not statistical standards;
- certain economic activities produce more than one product simultaneously,
- the same products may be produced by using different techniques of production;
- product classifications provide information beyond merely usual industry of origin;
- production functions evolve and businesses both horizontally and vertically diversify over time; and

\(^2\) “Ideal” here solely taking the context of “ideal for service industry statisticians to measure in practice.” See 1993 SNA S.40 through S.44 for a discussion of industries and homogenous statistical units.

\(^4\) As per the 1993 SNA definition:

5.21 The establishment combines both the kind of activity dimension and the locality dimension. An establishment is defined as an enterprise, or part of an enterprise, that is situated in a single location and in which only a single (non-ancillary) productive activity is carried out or in which the principal productive activity accounts for most of the value added.

5.22 Although the definition of an establishment allows for the possibility that there may be one or more secondary activities carried out, they should be on a small scale compared with the principal activity. If a secondary activity within an enterprise is as important, or nearly as important, as the principal activity, then that activity should be treated as taking place within a separate establishment from that in which the principal activity takes place. The definition of an establishment does not permit an ancillary activity to constitute an establishment on its own.
• under the most rigorous statistical units model, even the most homogenously defined statistical units inevitably undertake secondary production.

Thus it is not possible to consider product statistics as simply a disaggregation of industry statistics, nor industry statistics as some aggregate of product data.

Noting this, the OECD-Eurostat guide for service industry producer price indexes notes:

“This guide assumes that the main use of SPPI is deflation in national accounts, and therefore suggests that SPPI be product-based rather than industry-based. Following recommendations of the SNA/ESA, the GDP compilation in countries is increasingly based on the framework of supply and use tables, which means that data on output of industries are available by product groups and are not shown only as a sum of various types of products. In this situation, it is preferable to deflate output by product groups and to separate primary from secondary production rather than use a single deflator for the total output of an industry. In other words, by using product-based PPIs, national accountants may themselves estimate price and volume development for industry outputs where changes in the composition of output are taken frequently into account.

Having product SPPI available for deflation purposes is more practical rather than using an industry-based price index, which would require frequent re-weighting to match with the industry output in national accounts.”

In the measurement of service industry GDP, the aim of the SPPI should be a product level index; that is, it should measure changes in the prices of products regardless of the industry of the establishment producing them.

In practice, the development of SPPI's is constrained by competing uses of price indexes (inflationary analysis and contract escalation, in addition to the aforementioned product level deflation), and by the availability of turnover data by product. In practice the SPPI's developed by national statistical offices may be a mixture of industry and product SPPI's.

Whereas product level SPPI's are the desired tool for use in the measurement of service sector GDP, the use of industry SPPI's is possible under the following assumptions. Such assumptions need to be considered on an industry-by-industry (and indeed product-by-product) basis, the validity of which may vary between national economies and, within national economies, may vary by region or market.

The assumptions that permit the substitution of product SPPI's by industry SPPI's are:

a) product and industry almost directly align - the industry has negligible secondary production, and almost all production of the product occurs within the one industry, or

b) price movements align - secondary products within the industry have the same price movements as the primary product, which in turn move according to

*“Methodological Guide For Developing Producer Price Indices For Services”, OECD-Eurostat, paragraph 1.3”
supply and demand rather than industry of origin (that is, they move the same regardless of the industry that actually produces them).

The extent to which either of these assumptions holds indicates the suitability of substituting an industry level index for a product level index. For the service sector, the following observations are of particular note in assessing these assumptions:

- Many production functions are driven by labour inputs – where different types of service can be produced by the same individuals, it is reasonable to expect price movements to move similarly (e.g., different types of management consultancy products); but

- Many services require specialist labour inputs (e.g., different types of legal professional), and as a consequence there may exist variations in supply (and hence price) at the product level within a given industry, and

- The inability to re-trade services means that price discrimination is a key issue in measurement for SPPI’s.

Use of industry SPPI’s in the measurement of service sector GDP results in robust GDP measures to the extent that the assumptions of equivalence of service and industry SPPI’s are met. Put another way, the greater the divergence from the assumption of equivalence, the greater the likelihood of bias in resulting measures of service sector GDP.

5. Scope: international services versus exports of services

A recurring theme in Voorburg meetings arises regarding definition of scope, particularly for exports. This issue is frequently encountered in consideration of transport services but also arises in discussions regarding business services. Differences of opinion have been expressed as to when particular services are out of scope of SPPI’s and turnover surveys. For example:

- Can legal services be exported outside from international courts of law?

- Can road freight transport services be exported when vehicles do not cross international boundaries?

- Are road freight transport services in scope if the entire transport activity takes place on foreign soil?

The OECD/Eurostat SPPI manual clarifies this issue as follows:

Note that GDP is not intended to measure the production taking place within the geographical boundary of the economic territory. Some of the production of a

*See 1993 SNA 16:113

7 It is important to distinguish the difference between scope and coverage at this point. Scope here is used to refer to the population of interest (the service production of all resident producers); coverage is used here to refer to that part of the population that is a survey is attempting to measure; there may be a myriad of practical reasons why some activity is conceptually in-scope but considered out-of-coverage (for example, negligible impact on final results).

8 “Methodological Guide for Developing Produce Price Indices For Services”, OECD-Eurostat, glossary, with some slight amendment to give contemporary examples.
resident producer may take place abroad, while some of the production taking place within the geographical boundary of the economy may be carried out by non-resident producer units. For example, a resident producer may have teams of employees working abroad temporarily providing management consultancy services. This output is an export of a resident producer and the productive activity does not contribute to the GDP of the country in which it takes place. Thus, the distinction between resident and non-resident institutional units is crucial to the definition and coverage of GDP. In practice, of course, most of the productive activity of resident producers takes place within the country in which they are resident. However, producers in service industries which typically have to deliver their outputs directly to their clients wherever they are located are increasingly tending to engage in production in more than one country, a practice which is encouraged by rapid transportation and instantaneous communication facilities. Geographical boundaries between adjacent countries are becoming less significant for mobile service producers, especially in small countries bordered by several other countries.

To simplify: an export is determined by “who pays for the service” and not “where the service takes place”. So considering the types of examples above,

- legal services are exported if the purchaser is a non-resident
- road freight exports are determined by the residency of the purchaser, and not the geographic region where the activity takes place

The separate consideration of exports of services is clearly valid from a conceptual standpoint; however several practical issues arise when considering their measurement. Foremost among these is the issue of identification. National statistical offices frequently utilise establishment surveys for the measurement of price and turnover data, collecting data from the producer of the services. The focus on characteristics of the producer and not the purchaser may mean that the measurement instruments themselves may not differentiate between delivery of a service for domestic use, and services provided for non-resident purchasers. Determination of such details is frequently better achieved through instruments dedicated to the measurement of international trade in services. One implication here is that when service providers cannot explicitly identify exports, it is unclear whether the resulting statistics are measuring all output (as desired) or only output consumed domestically.

For any given service type, national statistical offices need to make an assessment as to the implications of not directly measuring exports of the service. This assessment should consider first the relative size of exports, and second the market in which such services are priced. Clearly, if service providers make no distinction regarding residency of purchasers when setting prices, then the argument for separate measurement of exports of the particular service is weakened. If however there is substantial price discrimination for the export market, the use of a “domestic only” price index for the purposes of deflation will frequently yield biased measurement of GDP. The likelihood of such price discrimination will vary from service to service, and from country to country.
6. Time based methods

The subject of methods based on working time is perhaps the most controversial of all issues discussed at the Voorburg Group, for it is the use of this class of pricing methods which highlights most definitively the practical compromises that national statistical offices are forced to make. Further, time based methods comprehensively illustrate the difficulties surrounding the very definition of services produced, and also the consequences of adopting methodologies which are not sufficiently integrated for the purposes of measurement of service sector GDP.

Methods based on working time do not measure the price received for delivery of service but instead attempt to measure the prices of time spent in service provision. This approach therefore carries the assumption that services correspond directly or predominantly to different types of chargeable hours actually worked for a client.

Time based methods arise for several types of reason:

a) *The service being produced cannot be adequately defined* and as a consequence an input-cost type measure is adopted;

b) *The service is well defined but is tailored uniquely to customers*, and cannot be repeatedly priced to constant quality, with the resulting method adopted measuring components based on working time;

c) *Regardless of the service definition, the pricing mechanism adopted by responding establishments is related to time worked*, and the pricing method reflects the bookkeeping practices, or

d) *The compliance cost of other methods is high*, and establishments refuse to participate in a timely manner unless presented with a method based on time worked.

When confronted with unique services the most appropriate alternative is to use model pricing. However, for many service industries, or for groups of establishments within these industries, the model pricing approach is burdensome. Burden is applied whenever the model is defined, whenever the model is changed, and more frequently whenever key staff changes occur within responding establishments. The consequence of such burden ranges from, at least, dissatisfied or recalcitrant respondents, to, at the other extreme, high levels of non-response, or data of questionable quality. The impact is therefore potential for bias to enter the measures of price change, and subsequently into derived measures of GDP. Accordingly, national statistical offices frequently depart from model pricing in these cases, avoiding the known problems associated with the application of this particular method.

However, whilst robust collection of data based on working-time mitigates the known biases surrounding non-response and burdensome compliance cost, the use of such methods themselves frequently result in biased estimates of GDP. If a price index is

9 This section uses the OECD-Eurostat definition of time-based methods – that is, a model price method that relies in part on price per hour (or day, etc) is also considered a time-based method. The section borrows heavily from 6.2.1 Section 2.9

10 *Methodological Guide For Developing Producer Price Indices For Services*, OECD-Eurostat, 2.8.1
assumed to be equal to the development of hourly rates, the resulting volume measures the time devoted to service provision (that is, the number of hours worked), rather than in the volume of services themselves. More explicitly, use of a time based method for SPPI’s tends to result in biased estimates of GDP.

Two questions then arise: how likely and important are these biases, and what can be done to mitigate them?

Biases arise in time based SPPI’s because they fail to measure changes in labour productivity. No change in the product (service delivered) is determinable apart from changes in staffing structure, and even in such cases the underlying assumptions are that labour productivity does not change “within staffing levels”. The extent to which this assumption is not valid is an indication of the degree to which any resulting measure of GDP is biased. In particular, there is a strong argument that suggests that changes of staffing structures themselves are strongly correlated with changes of roles and duties within a “staffing level”, and a change of roles and duties is explicitly a change in the quality (utility) of the labour provided. Thus, contrary the aims of such a measure, SPPI’s that assume that labour productivity does not change within staffing levels are failing to price to constant quality, arguably including times of change between “staffing levels”.

The key issue is that time based SPPI’s are a compromise, and that such a compromise is sensitive to changes in the scope of billable working hours. For example, consider the situation where charge-out rates for architects increase due to the introduction of new technology such as a CAD system. Such technology might allow them to complete tasks more quickly, in turn reducing their billable hours per client, whilst providing the same service to their clients. In such a case the more efficient delivery of the service is not reflected in the price index, and the price index would be upwardly biased, that is, the price index is measuring an increase in the hourly fee when the actual price per service delivered has not increased. Subsequently, any resultant volume measure (GDP) would be downwardly biased.

In attempting to mitigate these potential biases, the implications for national statistical offices are as follows:

a) Prices measured should be realised rates (e.g., realised hourly rates or fee income per grade of worker) – the use of salary or other input costs alone is not considered appropriate, and should not be used unless non-wage labour costs, profit margins, discounting, insurance, rent, and other overheads are also included as part of a model based approach;

b) The use of time based methods should be applied in “bands of expertise”, which should be defined on the basis of:
 - staffing levels
 - qualification

11 Time-based methods are often used for price indices when it is difficult to define the service being provided; it should come as no surprise that the resulting measure of volume of services is also ill-defined. This is a characteristic of the difficulty of measuring services. See the appendix for an example of the relationship between volume change and hours worked.

12 More completely, it might be better to say “changes in labour productivity, and also changes arising because of changes in multi-factor productivity due to, for example, a change in the mix of labour and technological capital”. The impact of technology is discussed later, but a thorough discussion of multi-factor productivity, its definition and measurement are well beyond the scope of this paper.

13 See subsequent discussions regarding actual changes in services due to IT.
- type of activity
- type of project.

c) Procedures should be adopted to capture changes in duties, roles and responsibilities within “bands of expertise” and where possible quantify them;

d) Mechanisms should be employed to identify changes in coverage of billable hours;

e) Mechanisms should be employed to determine whether realised rates have been influenced by changing technology, administrative reorganisation, or changes to billing structures;

f) Most importantly, mechanisms should be employed to detect and measure changes in productivity in individual service industries.

Regarding mechanisms to detect changes in productivity14, this could include specifically designed survey instruments, or additional questions as part of SPPi processing. Alternately this information may be obtainable from government agencies, from industry associations or from elsewhere in the national statistical system15.

One final concern regarding time based methods is their applicability in the presence of “sub-contracting”, where some portion of labour is supplied by another establishment16. This causes additional complications when attempting to use time-based methods as a compromise to model pricing. In such a case, the complication that arises is that the “hours worked” being reported may not align with turnover measures. For example, if a charge-out rate is being approximated by dividing turnover by hours worked, any sub-contracted work will most likely be excluded from the “hours” component but included (implicitly) in the “turnover” component. The use of any such derived approximation to charge-out rate is then problematic; the level of the price will clearly be higher than if sub-contracting had not been employed, and it is unclear whether movements in resulting prices are caused by compositional shifts in the amount of work sub-contracted or whether they reflect a real price change for the service being approximated. Consequently, the use of time-based methods where sub-contracting is employed is even more problematic than in other circumstances and should be discouraged.

These techniques do not entirely eliminate the risk of bias arising from the use of time based methods (that is, the bias of equating billable hours with service provision). Indeed, survey instruments designed to detect changes in productivity themselves increase respondent burden and compliance costs, and become “yet another ball in the balancing act”. However their proposed use attempts to mitigate the chief concerns associated with the use of time-based methods, and at the very least provides indicators as to when such biases are present.

7. Impact of new technology on services delivered

Voorburg Group discussions, particularly with respect to business services, frequently engage a theme of the impact of changing technology. The introduction of new

14 I'd like to thank Peter Bossers from DeStat for his excellent suggestion and resulting discussion, made at the OECD Eurostat workshop on SPPi's, October 16-19 Luxembourg, 2006.

15 Some care must be taken here to avoid circularity; for example, avoiding the case where SPPi's are used in the determination of productivity changes which are then used in the calculation of SPPi's.

16 Note that pricing methods other than those based on working time may also need to be applied with caution in the presence of sub-contracting; see the discussion in section 8.
technology is frequently addressed as a change in the service production function. Assuming that providers of services are efficient users of inputs (for example, labour and technology), the change in technology should show an increase in output for a fixed level of labour. Therefore any derived volume measure should show an increase. It is hence imperative that any SFP (measuring price to constant quality) should show a decrease.

However the introduction of technological change may not only change the production function for the final service delivered, it may also change the characteristics of the final product. Even discounting services where timing of service delivery is a paramount characteristic of utility, new technology allows more complex or more comprehensive services to be delivered from the same or even lower levels of inputs. This results in efficiencies for the service provider and also results in an improved product for the purchaser.

The key challenges for national statistical offices are then determining when service production has changed, and additionally ascertaining whether the final product (service) is different in any way as a consequence of this changed production function. This latter requirement will necessarily mean working closely with industry experts (especially respondents) to assist in identifying changes in services delivered, and then assisting the quantification of this change in quality.

For example, consider the introduction of technological change in the management consultancy industry. Such changes may include software or other analysis tools, and allow consultancy services to be undertaken to the same quality but with less labour. Such changes may also allow simultaneous, concurrent or integrated reorganisation of different aspects of a client’s key business, which may not have been possible prior to the introduction of the new technology. In this case the service being delivered has changed.

Continuing this example, since the service being delivered is complex it is appropriate that price changes are measured via model pricing. The challenge for the national statistical office is then to ensure that technological changes are reported during the regular collection cycle, and that the model is updated to reflect both the change in the production function (how it is produced) and the change in output (what is being delivered).

8. Bundled Services and Multi-modal solutions
The seemingly innocuous activity of transporting freight illustrates an issue that has occurred in discussion of all types of service industries: where are the boundaries for scope, and when are activities included, excluded or measured elsewhere? These questions arise from two distinct situations.

On the one hand, service providers are increasingly adopting a pricing mechanism known as bundling, where a combination of many service types (that is, distinct products) is included on one bill of service. The issue for national statistical offices is that whilst the fees levied per bill are frequently readily available from respondents, the composition of services varies from customer to customer, and from period to period. Any change in average “price per bill” is then in part due to pure price change and also due in part to change in both customer mix and service mixes for individual
customers. Examples have historically included services such as telecommunications, but the transport and storage industries are seeing “complete logistic solutions” which integrate storage, freight, freight forwarding and even courier services into one combined service.

When presented with a service where the pricing mechanism combines a number of discrete services, the appropriate mechanism to employ for development of SHPP’s is component pricing. In the component pricing method, a technique similar to model pricing, a service product or a base model of the service is agreed upon with the surveyed establishment. The key feature of model selection in this instance is that the resulting service is comprised of discrete elements for which actual prices can be determined. Continuing the examples above, this could be fixed numbers and types of telephone calls in the case of telecommunications, or specific combinations of storage and road freight for the combined “logistic solutions”. Under such an approach the resulting service may itself be fictitious (in the sense that no specific customer happens to have such a combination of discrete elements). The statistical office then combines this information to compute a price index for the composite service.

However, the approach recommended above is susceptible to potential flaws. In the example of telecommunications, the aggregate of individually provided services provides a price of a telecommunications product. However the aggregate estimate in the “logistic solutions” example has services that are different types of products — that is, the bundle of services covers different types of service products. Following the “logistic solution” example, this would involve aggregation of measures for road freight, for storage and for courier services. The price for the bundle does not represent any one type of service product and, in this particular example, the bundle indeed cuts across different industries. So where component cost can provide a solution to the issue of bundling for some services, for others a modified approach is required.

It is not immediately clear how to proceed in these cases, although one possible suggestion that warrants further attention (“disaggregated cost component”) is presented below:

If we consider the elements of the component cost pricing method, we see that key features are:

- elements of an individual service type that can be individually priced each period using real transaction prices;
- weighting data that allows the priced elements to be combined into aggregates for the service; and
- (implicitly) higher level weighting data that allows results from individual establishments to be recombined to produce broader measures of price change for the service product.

It may then be possible to utilise the sub-establishment weights inherent within the component cost model to combine service components along product lines within

This section draws heavily from “Methodological Guide For Developing Producer Price Indices For Services”, OECD-Eurostat 2.6.

In component pricing, prices of sub-components should be based on prices of truly transacted services. In this respect the method differs from model pricing where sub-component prices are largely estimated.
an establishment, and then rather than combining the products within the establishment (in this example, storage and road freight), combine individual components across establishments. So for example, the SPPI survey is conducted so that elements of the “logistic solutions” are priced individually as via component cost, but road freight measures are combined with road freight measures from other establishments, rather than within the “logistic solutions” establishment. This approach would continue to require identification of elements that can be repeatedly priced from period to period, and would further require derivation and maintenance of detailed sets of weighting data.

A variation on this approach might be to consider a full model price approach (where prices for the elements are estimated rather than observed directly), and then combine these prices of the elements not within the models for each establishment but, again, across establishments. This would then necessitate the mapping of each model element to an appropriate service type.

Further work is needed with regards to both the problem of bundling across service types, and possible solutions.

In addition to the bundling issue, a second situation arises when the delivery of one service itself requires the use of another service. Examples include accountancy services which provide services of a management consultancy nature, management consultancy services which in turn require the development of software (that is, software consultancy), and road freight services that use sea, rail or air transport as part of the service provision mechanism.

The determination of the appropriate treatment of such services can be resolved by reference to SNA93 (intermediate consumption):

6.152 When goods or services produced within the same establishment are fed back as inputs into the production within the same establishment, they are not recorded as part of the intermediate consumption or the output of that establishment. On the other hand, deliveries of goods and services between different establishments belonging to the same enterprise are recorded as outputs by the producing establishments and must, therefore, be recorded as intermediate inputs by the receiving establishments.

That is, in the system of national accounts, services provided outside an establishment but used by that establishment are measured as intermediate consumption of that establishment. For SPPI’s the implication is that, for example, a road freight service that uses a ferry is still considered a road freight service, provided that the ferry service is not produced on own-account within the same establishment.

Much discussion on this topic has centred on “double counting”. In the road freight–ferry example, the typical discussions might note “the counting of a price movement

19 The distinction between the two types of examples is important. One the one hand a “logistics company” may offer storage and delivery as a combined service – this is the “bundled product” type example, where the services are distinct and are combined only as part of the pricing mechanism. The second example is where one service is consumed as part of service delivery – such as road freight requiring the use of a ferry.

20 That is, if the statistical units are defined according to the discussion in Section 4.
of road freight that is (in essence) driven by price movements in sea freight will result in aggregate measurement of transport services where price movements are double counted, hence the price index is upwardly biased and the resulting volume estimate (GDP) is downwardly biased.

This line of argument perhaps has some merit when considering inflationary analysis, and is a concern typical of all gross sector price indexes. One solution to this dilemma is to construct aggregate indexes on a net sector basis, that is, continuing the road freight-ferry example, any aggregate measure of change in output prices such as “transport services” excludes those transactions that occur intra-sector (in this case, specifically excluding the ferry service as purchased by the road freight establishment, but including the road freight service).

However, if the national accounts are produced on a supply-use framework, it is vital that national accountants are able to get measures of price change for the delivery of both road freight services and sea freight services, since the sea freight service (in this example, the ferry) is an intermediate input into road freight. That is, when considering detailed product level indexes, double counting is not a concern and instead the SPPI should measure all outputs, including those transactions used as intermediate consumption elsewhere. The caveat that applies here is to differentiate as to when the service is provided is intermediate consumption, and when it is produced on own-account.

9. Summary
A range themes recurring at Voorburg Group discussions has been discussed. They key points raised were:

a) SPPI's for the purpose of measuring service sector GDP should be produced on a product basis and not an industry basis; use of industry SPPI’s in appropriate under assumptions regarding level of secondary production, horizontal and vertical diversification, production functions, market operations and price discrimination.

b) Scope of SPPI’s should be all output of businesses, both to domestic and non-resident purchasers; the definition of an export of service should be determined by the residency of the purchaser and not necessarily by where the service takes place.

c) The use of time based methods for SPPI's generally results in a biased measure of price change and consequently a biased measure of GDP. Explicitly, the resulting measure of GDP is equivalent to a measure of “hours worked”, and fails to capture changes due to labour productivity.

d) This bias can be in some part mitigated through use of realised rates of revenue, collection of data in “bands of expertise” where the activities of such bands are closely monitored, and through use of mechanisms explicitly designed to measure changes in productivity.

9* This is the approach adopted by the Australian Bureau of Statistics (ABS) for the manufacturing sector PPI's

90 See discussion in Section 4
e) Care also needs to be taken when applying time based methods in the presence of sub-contracting.

f) When new technology changes the production function for a service, an assessment needs to be as to whether the actual service has changed.

g) The issue of bundling of services (a pricing mechanism) can be resolved through the component cost approach. However, this technique is limited when the “bundle” cuts across service types. Further work is required in this area.

Services consumed in the delivery of other services (intermediate consumption) need to be priced in their respective product level price indexes, with care taken to remove those instances where such services are produced on own-account.
APPENDIX: Use of time based methods for SPPI and resultant volume measures

Consider a typical time based method where charge-out rates are calculated as average revenue or turnover per hour of labour. If a price index is constructed from these data, changes in the price index are simply measuring changes in hourly rates. If these price changes in turn are used in deflation of national accounts value aggregates, the resulting volume (and volume change) measures are only measuring changes in hours worked. These do not consider other inputs, margins, or changes in productivity (labour or otherwise).

\[P = \frac{\text{Turnover}}{\text{Hours}} \]
\[V = \text{Turnover} \]
\[V = P \times Q \]
\[Q = \frac{V}{P} \]
\[= \frac{\text{Turnover}}{(\frac{\text{Turnover}}{\text{Hours}})} \]
\[= \text{Hours} \]
\[\Delta Q = \Delta \text{Hours} \]